MCDS4805 (E) 使用手册 (V1.0) 编写人: 张显平 审核人 反馈问题 结论 曹海峰 祁占云

※ 直流伺服电机驱动器 ※

MCDS4805(E) 使用手册(V1.0)

西安铭朗电子科技有限责任公司 (2017-8-8)

目

T	
-21	

一. ‡	既述	6
1.	型号说明	6
2.	适用范围	6
3.	使用条件	6
二. J	为能技术指标	7
1.	主要功能	7
2.	工作模式配置表	7
3.	技术参数・	8
三. 対	端口说明	10
1.	接口定义	10
2.	匹配的接插件	11
3.	接线图	12
4.	安装尺寸(单位: mm)	13
四. ∄	操作说明	14
1.	初始化设置	14
	.1 驱动器出厂时的默认参数如下	
1	.2 参数设置	15
1	.3 指示灯	15
2.	初始化相位	15
2	2.1 初始化相位的注意事项	15
2	.2 初始化相位的操作方法	16
3.	速度控制模式	16
3	3.1 数字指令(RS232、CAN)速度控制模式(SMOD0)	16
3	3.2 PWM+DIR 、PWM 速度控制模式 (SMOD8、SMOD2)	16
3	3.3 CLK+DIR、CLK UP/CLK DOWN 脉冲信号速度控制模式 (SMOD3、SMOD6)	17
3	3.4 单端模拟信号速度控制模式(SMOD5)	18
3	3.5 10V+DIR 信号速度控制模式(SMOD9)	18
3	3.6 差分模拟信号速度控制模式(SMOD1)	19
4.	转矩控制模式	20

4.1 数字指令 (RS232、CAN) 转矩控制模式 (SMOD512)	20
4.2 PWM+DIR 、PWM 转矩控制模式 (SMOD520、SMOD514)	20
4.3 单端模拟信号转矩控制模式(SMOD517)	21
4.4 10V+DIR 信号转矩控制模式(SMOD521)	21
4.5 差分模拟信号转矩控制模式(SMOD513)	22
5 位置控制模式	23
5.1 数字指令 (RS232、CAN) 位置控制模式 (SMOD256)	23
5.2 CLK+DIR 、CLK UP/CLK DOWN 脉冲位置控制模式 (SMOD259、SMOD2	62)23
5.3 QUAD A/B 编码器信号位置控制模式 (SMOD263)	24
6. 可编程数字 I/O	25
6.1 外部控制可编程输入接口	25
6.2 可编程输出端口	25
7.其它操作	26
7.1 寻零	26
7.2 硬件限位、软件限位	26
五.故障保护与复位	29
1. 安全级别	29
2. 故障保护依据	
2.1 温度报警	
2.2 温度保护	
2.3 过流保护	29
2.4 过压、欠压保护	30
2.5 速失控保护	30
2.6 跟踪误差保护	31
3. 故障信息列表	
六. PID 调试	
1. 速度环 PID 调试	
 还度环PID 调试 位置PID 调试 	
3. 力矩环 PID 调试	
七.参数设置与常见问题	

1.	参数设置	37
2.	参数保存	.37
3.	ENA/DIS 指令和外部使能信号 ENABLE 的关系	.37
4.	关于 SBS 急停指令	.37
5.	关于读取速度指令 GV	.37
6.	关于 FSA 指今	37

使用警告:

DANGER

- 1、初次使用或更改线序后, 应先进行相位初始化操作, 待初始化成功后,断电再上 电,才能进行正常操作。
- 2、在初始化不成功、接线 有误等情况下操作电机旋 转时,电机会因相位不正确 而停转并发热,若持续时间 过长会烧坏电机,此时应尽 快关闭驱动器电源。

一. 概述

1. 型号说明

MCDS4805 (E)

MC----产品系列代码

DS-----直流伺服电机驱动器

48------电源电压+12~48V

05------最大连续输出电流 5A

E -----工业级

2. 适用范围

- 适合驱动 DC+12~48V 直流无刷伺服电机;
- 最大连续电流 5A,最大峰值电流 10A;
- 功率 240W 以内,过载能力达 480W;

3. 使用条件

(1) 电源:

- 电源输入范围: +12~48V;
- 能提供2倍于连续电流的瞬间电流过载能力;
- (2) 反馈元件:
 - 增量式编码器和霍尔传感器
- (3) 使用环境:

温度: MCDS4805: -10~70℃(以驱动器壳体表面温度为准); MCDS4805E: -45~85℃(以驱动器壳体表面温度为准);

- 湿度: 85%RH 以下:
- 无防水要求;
- 无腐蚀性气体。

二. 功能技术指标

1. 主要功能

- 工作模式:转矩模式、速度模式、位置模式;
- 反馈元件:增量式编码器,霍尔传感器;
- ◆ 控制端口:数字指令 RS232、CAN, Pulse1 / CU(高速输入, 脉冲或 CU(正向脉冲)输入), Pulse2 / CD / DIR(高速输入, 方向或 CD(反向脉冲)输入), ENABLE/
 DIR/LEFT/RIGHT/IO1~IO2(6个可编程输入端口), FAULT /IO3~4(3个可编程输出端口),
 ±10V模拟电压,单端模拟电压(电位器);
- 可以通过 CAN 总线组网控制;
- 适合驱动直流无刷伺服电机;
- 空间矢量运算,正弦波控制(直流无刷伺服电机);
- 自动寻零功能;
- 硬件、软件限位功能;
- IIT 电流限制;
- 温度保护;
- 过压、欠压保护;
- 速失控保护;
- 跟踪超限保护;

2. 工作模式配置表

工作模式	控制	」指令
转矩模式	RS232	CAN
	模拟单端、差分电压、10V+DIR	PWM、PWM+DIR
	RS232	CAN
速度模式	CLK+DIR 步进脉冲	PWM、PWM+DIR
	模拟单端、差分电压、10V+DIR	CLK UP/CLK DOWN 脉冲输入
位置模式	RS232	CAN
业直 揆入	CLK+DIR 步进脉冲	CLK UP/CLK DOWN、QUAD A/B 脉冲输入

3. 技术参数•

参数	标号	参数值	单位
电源电压	U	12-48	V
最大连续输出电流	Ic	5	А
最大峰值输出电流	l _{Peak}	10	А
PWM 开关频率	fрwм	15	kHz
静态功耗	lel	63/12V, 60/24V, 43/36V, 36/48V	mA
	RS232	115200, 57600,38400,19200,9600	bps
通讯端口	CAN2.0B	1000,500,250,125,100,50,20	kbps
	USB 转RS232	115200, 57600,38400,19200,9600	bps
炒 山炉缸 思	+5V _{out}	5	VDC
输出编码器电源 	Icc	100	mA
公江 现 松 入	信号属性	TTL,5V 差分,集电极开路	
编码器输入	最高频率	300	KHz
	AIN+,AIN-	±10	V
模拟输入电平	POT	0~+5	V
	10V+DIR	0~+10	V
模拟输入阻抗	AIN+,AIN-/10V+DIR	5.1	ΚΩ
人民政和八四九	POT	50	K77
		OC 输出, 最高上拉 10k Ω @30V も流	
故障输出	FAULT, IO3, IO4	5mA	
		有故障: 高低电平可配置	
	ENABLE, DIR,	输入: 高电平 3~24V,低电平 0~0.3V	
外部输入控制电平	LEFT, RIGHT, IO1,		
	IO2	高低电平可配置	
	信号标准	低电平 0~0.3,高电平 3~24	V
PWM 控制	频段	100~500	Hz
	占空比范围	0%≤占空比≤100%	

步进脉冲最高频率	f _{max}	300	KHz
外部控制电源	VC+	5-24	V
欠压保护	Vu	10.5	V
过压保护	Vo	54	V
地址设置	软件节点地址	2~127	
工作温度	MCDS4805	- 10∼70	$^{\circ}$
上作血皮	MCDS4805E	- 45∼85	C
高低温保护	MCDS4805	小于-10℃或大于 70℃保护	${\mathbb C}$
间隔血体扩	MCDS4805E	小于-45℃或大于 85℃保护	

三. 端口说明

1. 接口定义

JX.编码器输入

引脚序号定义	信号	信号方向	引脚		信号	信号方向
	编码器地 GND	公共端	1	2	编码器电源+5Vout	输出
	编码器 A-	输入	3	4	编码器 A+	输入
14 2	编码器 B-	输入	5	6	编码器 B+	输入
	编码器 Z-	输入	7	8	编码器 Z+	输入
13 1	霍尔反馈 U-相	输入	9	10	霍尔反馈 U+相	输入
	霍尔反馈 V-相	输入	11	12	霍尔反馈 V+相	输入
	霍尔反馈 W-相	输入	13	14	霍尔反馈 W+相	输入

J2. USB

标准的 USB 口

J3.CAN/RS232

引脚序号定义	信号	引脚		信号
10 2	CAN 总线 L	1	2	CAN 总线 H
Secretary .	RS232 地	3	4	RS232 发送端 TX
9 1		5	6	RS232 接收端 RX
		7	8	120Ω电阻
	CAN 总线 L	9	10	CAN 总线 H

J4.控制端口

引脚序号定义	信号	信号方向	引脚		信号	信号方向
	AIN-	输入	1	2	AIN+	输入
	POT	输入	3	4	AGND	公共地
20 2	GND	公共地	5 6		+5Vout	输出
*************	RX	输入	7	8	TX	输出
19 1	VC+	输出	9	10	Pulse1 / CU	输入
	ENABLE	输入	11	12	Pulse2 / CD / DIR	输入
	RIGHT	输入	13	14	LEFT	输入

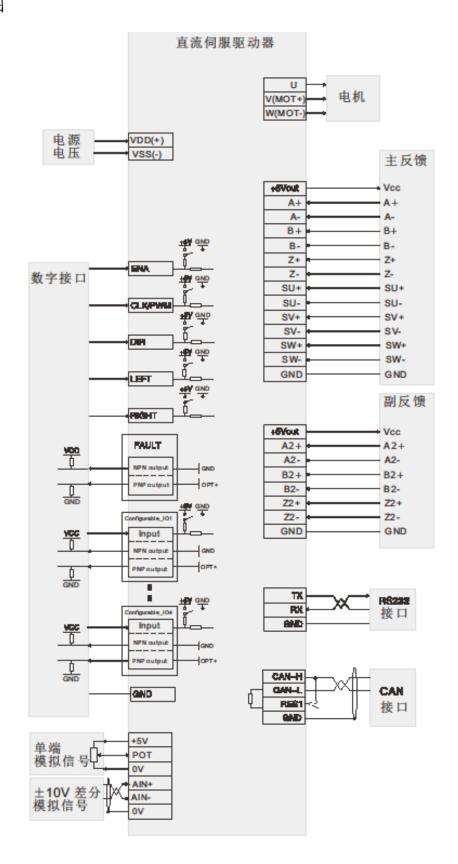
IO1	输入/输出	15	16	FAULT	输出
IO3	输入/输出	17	18	IO2	输入/输出
GND	公共地	19	20	104	输入/输出

- a) AIN+, AIN-: ±10V 差分模拟电压输入/10V+DIR 单端模拟输入(AIN+)
- b) +5Vout, POT, AGND: 0~5V 单端模拟电压输入
- c) TX, RX, GND: RS232 接口
- d) VC+: 外部上拉电源
- e) Pulse1: 高速输入, 脉冲或 CU (正向脉冲) 输入, CH.A 编码输入,详细内容见随后"操作说明"章节
- f) Pulse2: 高速输入,方向或 CD (反向脉冲) 输入, CH.B 编码输入,详细内容见随后"操作说明"章节
- g) Enable::驱动器使能或释放输入
- h) Left: 左限位
- i) Right: 右限位
- j) Fault: 故障输出
- k) IO1~2: 可编程输入; IO3~4: 可编程输出;

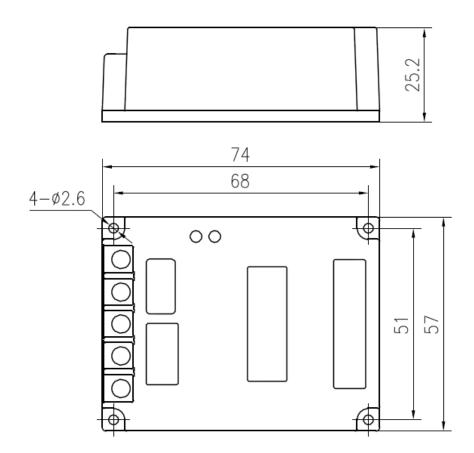
注释: J3、J4 中的 RS232 只能任意使用其中的一个,不支持同时使用。

J4.电源

引脚序号定义	信号				
VDD	驱动器电源				
VSS	驱动器电源地				


J5.电机

引脚序号定义	直流无刷伺服电机	引脚序号定义	直流无刷伺服电机
U	电机 U 相绕组	V	电机 V 相绕组
W	电机 W 相绕组		


2. 匹配的接插件

接插件	插头	引脚	制造商
J1 编码器	501646-1400	501647-1000	Molex
J3 CAN/RS232	501646-1000	501647-1000	Molex
J4 控制端口	501646-2000	501647-1000	Molex

3. 接线图

4. 安装尺寸(单位: mm)

四. 操作说明

1. 初始化设置

1.1 驱动器出厂时的默认参数如下

指令参数	说明	
ENA	内部使能有效	
SMOD512	转矩模式,信号源数字指令	
BAUD9600	RS-232 串口波特率 9600bps	
SUBD9600	USB 转 RS232 串口波特率 9600bps	
CAN	波特率 500Kbps	
SPC10000	最大峰值电流 10A	
SCC5000	最大连续电流 5A	
A90	加速度 90	
MP1000	位置比例系数 1000	
MIO	位置积分系数 0	
MD0	位置微分系数 0	
P1000	速度比例系数 1000	
1200	速度积分系数 200	
D0	微分系数 0	
lp1000	电流比例系数 1000	
li100	电流积分系数 100	
ld0	电流微分系数 0	
SSP5000	最高速度 5000RPM	
SMV0	PWM 死区范围	
SMAV200	死区电压 200mV	
SPT1000	设置延迟保护时间 1000ms	
SPH200000000	设置位置范围上限	
SPL-2000000000	设置位置范围下限	
SPE0	禁用软件位置限制	
SPHE0	禁用硬件位置限制	

STW1 步宽 1		
ENC10000	编码器分辨率 10000(2500 线)	
SER60000	设置最大位置跟踪误差 60000	
SIIT1000	设置 IIT 保护时间 1000mS	
SCIT12000	设置 IIT 恢复时间 12000mS	

1.2 参数设置

用户需要根据所选的电机、编码器及负载情况重新设置参数并存储。设置方法如下:

- 通过本公司提供的《伺服运控管理系统--铭朗科技--V3.31》软件进行设置,在相应栏目输入参数,分别点击"设置"和"保存至 EEPROM"两个按钮,即可存储;
- 根据通讯协议,用户通过数字指令(RS232 或 CAN)分别进行设置,最后通过指令"ESA"保存至 EEPROM。
- CAN 通讯波特率更改后需保存后,断电再上电时才起效,它不同于串口 RS232 设置后立即起效。
- 用户可以根据编码器 A/B 通道超前或滞后设置电机的正方向。
- 注意:参数设置后,驱动器只是暂存参数,必须保存至 EEPROM,才能永久生效。

1.3 指示灯

指示灯	状态	含义	
电源灯 PWR	绿灯常亮	供电正常	
电极灯 『WK	熄灭	无电源	
状态灯 STATUS	绿灯闪烁	释放电机	
	绿灯常亮	使能电机	
	红灯常亮	故障、初始化失败	
	红灯闪烁	正在进行相位初始化	

2. 初始化相位

2.1 初始化相位的注意事项

- (1) 初始化相位主要是确定电机的相位角,电流与电机的方向等,所以当电机初次使用或更改了电机线 序、霍尔线序、编码器线序都要进行一次初始化相位操作。
- (2) 由于在进行初始化相位操作时要对电机进行不定旋转,所以要求初始化操作时电机空载,以免损坏设备。

(3) 只有在初始化相位成功后,断电再上电后,方可对电机进行正常的操作,否则可能会造成电机堵转 而损坏设备。

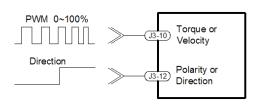
2.2 初始化相位的操作方法

用户根据反馈元件,选择"有霍尔传感器"相位初始化或"无霍尔传感器"相位初始化。

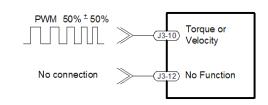
- (1) 正确设置反馈参数、电机磁极对数以及初始化电流。若选择"无霍尔传感器"相位初始化,还需设置"初始化电流(无霍尔)"。
- (2) 在《伺服运控管理系统--铭朗科技--V3.31》软件中使用启动"初始化相位"按键或发送 CPA+电流参数指令。
- (3) 根据 STATUS 指示灯来观测进度。

红灯闪烁: 正在进行相位初始化

绿灯常亮:相位初始化完毕,初始化成功


红灯常亮:相位初始化完毕,初始化失败

- (4)如果相位初始化失败,请检查接线、电机磁极对数或者调整初始化电流并再次进行相位初始化,直至相位初始化成功。
- 3. 速度控制模式
- 3.1 数字指令 (RS232、CAN) 速度控制模式 (SMOD0)
- (1) 指令: V + 参数


如: V1000 启动速控模式, 电机开始以设定的速度运动。

- (2) 相关指令: A (加速度)
- 3.2 PWM+DIR、PWM 速度控制模式 (SMOD8、SMOD2)

PWM+50%输入

(1) PWM+DIR、PWM 信号规范:

频率范围: 100-500Hz;

占空比范围: 0%≤占空比≤100%。

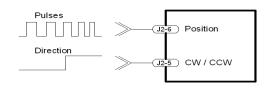
- (2) 工作原理
 - a) PWM+DIR 信号源:

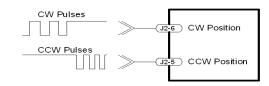
当占空比=0, V=0; 占空比=100%, V 最大。DIR 控制电机的方向, DIR 的有效电平通过《伺服运控管理系统--铭朗科技--V3.31》软件可配置。

速度计算公式:

b) PWM 信号源

当占空比=50%, V=0; 占空比<50%, 电机反转; 占空比>50%, 电机正转。 计算公式:


- (3) 相关指令:
 - 最大速度: SSP + 参数
 - 设置死区范围: SMV + 参数


为了保证 PWM 占空比=50%(PWM 信号源)或 PWM 占空比=0(PWM+DIR 信号源)时, 电机速度绝对为零,可用 SMV 指令设置死区范围。

3.3 CLK+DIR、CLK UP/CLK DOWN 脉冲信号速度控制模式 (SMOD3、SMOD6)

CLK+DIR 脉冲输入

- (1) 脉冲输入频率范围: 0~300KHz
- (2) 工作原理
 - a) CLK+DIR 信号源:

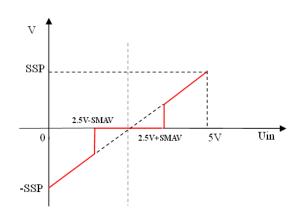
转速与脉冲频率之间的关系如下:

转速=最高转速 SSP x (脉冲频率÷脉冲输入最高频率 SSK) 电机的方向通过 DIR 信号控制。 DIR 的有效电平通过《伺服运控管理系统--铭朗科技--V3.31》 软件可配置。

b) CLK UP/CLK DOWN 信号源:

转速与脉冲频率之间的关系如下:

转速=最高转速 SSP x(脉冲频率÷脉冲输入最高频率 SSK), 其中,脉冲频率=CW Pulses - CCW Pulses 若 CW Pulses 与 CCW Pulses 频率相同,则速度为 0; 若 CW Pulses 的频率高于 CCW Pulses 的频率,则电机正转;反之,则反转。


(3) 相关指令:

- 设置最大速度: SSP + 参数
- 设置最大加速度: A + 参数
- 设置步宽: STW + 参数
- 读取步宽值: GSTW
- 设置脉冲输入最高频率 SSK +参数
- 读取脉冲输入最高频率 GSK

3.4 单端模拟信号速度控制模式 (SMOD5)

- (1) POT 电压输入范围: 0~+5V;
- (2) 相关指令: SSP(最大速度), SMAV(死区电压)
 - 最大速度: SSP + 参数
 例如, SSP5000。电机允许速度范围: -5000~5000 RPM。
 - 死区电压: SMAV+ 参数

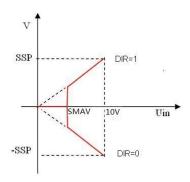
例如: SMAV200。当输入信号电压范围在 2.5V±199mV 时,电机速度为零;模拟电压控制速度的特性曲线如图:

注: 如果死区电压值设置过低,在该端口悬空时,驱动器可能会控制电机以一个很低的速度旋转。

当輸入模拟信号电压为 VIN 伏时: \pm VIN=2.5V 时, V=0; \pm VIN>2.5V 时, 电机正转; \pm VIN<2.5V 时, 电机反转。

电机运行速度计算公式为:

 $V = SSP x (VIN - 2.5V) \div 2.5V;$


- 3.5 10V+DIR 信号速度控制模式 (SMOD9)
- (1) POT 电压输入范围: 0~+10V;

- (2) 相关指令: SSP(最大速度), SMAV(死区电压)
 - 最大速度: SSP + 参数

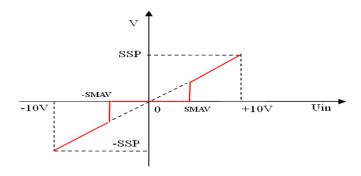
例如, SSP5000。电机允许速度范围: -5000~5000 RPM。

• 死区电压: SMAV + 参数

例如: SMAV200。当输入信号电压范围在 OV 到 200mV 时,电机速度为 0;模拟电压控制速度的特性曲线如图:

注: 死区电压值如果设置过低,可能在低速区电机转速不稳定。

电机转速和输入电压的关系:


$V = SSP \times VIN \div 10V$

- 电机的方向通过 DIR 信号控制。DIR 的有效电平通过《伺服运控管理系统--铭朗科技--V3. 31》软件可配置。
- 3.6 差分模拟信号速度控制模式 (SMOD1)
- (1) AIN+, AIN-输入电压范围: -10V~+10V; 输入电压 VIN = (AIN+) (AIN-);
- (2) 相关指令: SSP(最大速度), SMAV(死区电压)
 - 最大速度: SSP + 参数

例如, SSP5000。电机允许速度范围: -5000~5000 RPM。

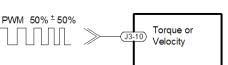
• 死区电压: SMAV + 参数

例如: SMAV200。当输入信号电压范围在 -200mV 到 200mV 时,电机速度为零;模拟电压控制速度的特性曲线如图:

注:如果死区电压值设置过低,在该端口悬空时,驱动器可能会控制电机以一个很低的速度旋转。

电机转速和输入电压的关系:

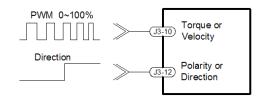
V = SSP ×VIN÷10V


4. 转矩控制模式

- 4.1 数字指令 (RS232、CAN) 转矩控制模式 (SMOD512)
- (1) 相关指令:
- 设置最大连续电流: SCC + 参数
- 设置输出目标电流: EC + 参数

例如: EC5000 输出 5000mA 电流,驱动器向电机施加正向电流。

4.2 PWM+DIR、PWM 转矩控制模式 (SMOD520、SMOD514)


PWM+DIR 输入

No Function

PWM+50%输入

No connection

(1) PWM+DIR、PWM 信号规范:

频率范围: 100-500Hz;

占空比范围: 0%≤占空比≤100%。

- (2) 工作原理:
 - a) PWM+DIR 信号源:

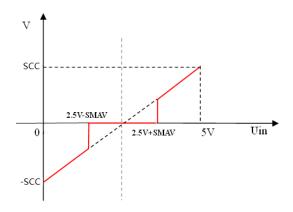
当占空比=0, lout =0; 占空比=100%, lout 最大。DIR 控制电机的方向, DIR 的有效电平通过《伺服运控管理系统--铭朗科技--V3.31》软件可配置。

转矩计算公式:

b) PWM 信号源:

占空比=50%, lout=0; 占空比<50%, 输出反向电流; 占空比>50%, 输出正向电流。 计算公式:

lout = SCC x (占空比 x 100 - 50) /50

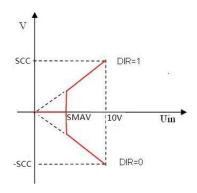

(3) 相关指令:

- 设置最大连续电流: SCC + 参数
- 设置死区范围: SMV + 参数

为了保证 PWM 占空比=50%(PWM 信号源)或 PWM 占空比=0(PWM+DIR 信号源)时,电机转矩绝对为零,可用 SMV 指令设置死区范围。

- 4.3 单端模拟信号转矩控制模式 (SMOD517)
- (1) POT 电压输入范围: 0~+5V;
- (2) 相关指令: SCC (最大电流), SMAV (死区电压)
 - 最大电流: SCC + 参数
 - ●死区电压: SMAV+参数

例如: SMAV200。当输入信号电压范围在 2.5V±199mV 时,电机电流为零;模拟电压控制电流的特性曲线如图:


注: 如果死区电压值设置过低,在该端口悬空时,驱动器可能会控制电机以一个很低的速度旋转。 当输入模拟信号电压为 VIN 伏时: 当VIN=2.5V 时, V=0; 当VIN>2.5V 时, 电机正转; 当 VIN<2.5V 时, 电机反转。

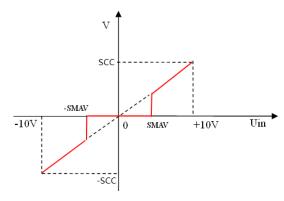
电机电流和输入电压的关系:

lout = SCC x (VIN - 2.5V) \div 2.5V;

- 4.4 10V+DIR 信号转矩控制模式 (SMOD521)
- (1) 10V+DIR 电压输入范围: 0~+10V:
- (2) 相关指令: SCC (最大电流), SMAV (死区电压)
 - 最大电流: SCC + 参数
 - 死区电压: SMAV + 参数

例如: SMAV200。当输入信号电压范围在 0V 到 200mV 时, 电机电流为零; 模拟电压控制电流输出的特性曲线如图:

注: 死区电压值如果设置过低,可能在低速区电机转速不稳定。 电机电流和输入电压的关系:


Iout= SCC ×VIN÷10V

• 电机的方向通过 DIR 信号控制。DIR 的有效电平通过《伺服运控管理系统--铭朗科技--V3.31》软件 可配置。

4.5 差分模拟信号转矩控制模式(SMOD513)

- (1) AIN+, AIN-输入电压范围: -10V~+10V; 输入电压 VIN = (AIN+) (AIN-);
- (2) 相关指令: SCC(最大电流), SMAV(死区电压), SL, SR
 - 最大电流: SCC + 参数
 - 死区电压: SMAV + 参数

例如: SMAV200。当输入信号电压范围在 -200mV 到 200mV 时, 电机电流为零; 模拟电压控 制电流输出的特性曲线如图:

注:如果死区电压值设置过低,在该端口悬空时,驱动器可能会控制电机以一个很低的 速度旋转。

电机电流和输入电压的关系:

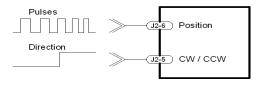
Iout = SCC ×VIN÷10V

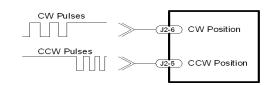
5 位置控制模式

- 5.1 数字指令 (RS232、CAN) 位置控制模式 (SMOD256)
- (1) 启动条件: 电机停止运动时, 才能启动位置控制模式
- (2) 相关指令:
 - 设置绝对位置: PO +参数

把当前位置设置为参数对应的绝对位置。

如: PO0, 则当前位置被设置为绝对零点。


- 设置最大速度: SSP + 参数
- 设置最大加速度: A + 参数
- 以绝对位置参量设置目标位置: M + 参数


如: M2000,从当前位置运动到绝对位置 2000; M-2000,从当前位置运动到绝对位置 -2000。

• 以相对位置参量设置目标位置: MR + 参数

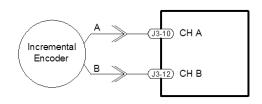
如: MR2000, 从当前位置正向运动 2000 个单位; MR-2000, 从当前位置负向运动 2000 个单位。

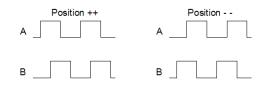
5.2 CLK+DIR 、CLK UP/CLK DOWN 脉冲位置控制模式 (SMOD259、SMOD262)

- (1) 脉冲输入频率范围: 0~300KHz
- (2) 相关指令:
 - 设置最大速度: SSP + 参数
 - 设置最大跟踪误差: SER + 参数
 - 设置最大加速度: A + 参数
 - 设置步宽: STW + 参数
 - 读取步宽值: GSTW
 - (3) 工作原理
 - a) CLK+DIR 信号源:
 - 脉冲输入端每接收一个脉冲,电机运转一个步宽; 位置与及转速的计算公式如下:

位置(圈数)=脉冲个数 X 步宽(STW)÷ 编码器分辨率(4 倍线数) 转速(RPM)=脉冲频率 x 步宽(STW)x 60 ÷ 编码器分辨率(4 倍线数)

• 通过 DIR 信号控制方向。


b) CLK UP/CLK DOWN 信号源


●脉冲输入端每接收一个△脉冲(CW Pulses - CCW Pulses), 电机运转一个步宽; 位置与及转速的计算公式如下:

位置 (圏数) = 脉冲个数 X 步宽 (STW) ÷ 编码器分辨率 (4 倍线数) 转速 (RPM) = 脉冲频率 x 步宽 (STW) x 60 ÷ 编码器分辨率 (4 倍线数) 其中, 脉冲个数(脉冲频率)=CW Pulses - CCW Pulses

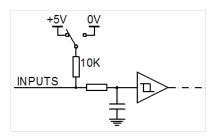
若 CW Pulses 与 CCW Pulses 频率相同,则速度为 0; 若 CW Pulses 的频率高于 CCW Pulses 的频率,则电机正转;反之,则反转。

5.3 QUAD A/B 编码器信号位置控制模式 (SMOD263)

- (1)编码器 A、编码器 B 信号正交脉冲输入。
- (2) 相关指令:
 - 设置最大速度: SSP + 参数
 - 设置最大跟踪误差: SER + 参数
 - 设置最大加速度: A + 参数
 - 设置步宽: STW + 参数
 - 读取步宽值: GSTW
- (3) 工作原理:

输入端每接收一个正交脉冲(QUAD A/B), 电机运转一个步宽;

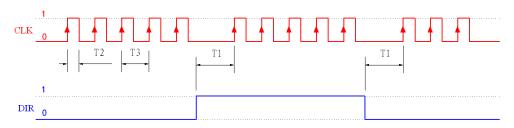
位置与及转速的计算公式如下:


位置(圈数)=脉冲个数 X 步宽(STW)÷ 编码器分辨率(4 倍线数)转速(RPM)=脉冲频率 x 步宽(STW)x 60 ÷ 编码器分辨率(4 倍线数)其中,脉冲个数=正交脉冲

若编码器 A 与编码器 B 频率相同,则速度为 0; 若编码器 A 超前编码器 B,则电机正转; 反之,则反转。

6. 可编程数字 I/O

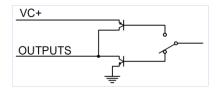
6.1 外部控制可编程输入接口


IO1~IO2, ENABLE, CLK/PWM, DIR, LEFT, RIGHT 输入引脚接口电路如下:

- (1) 输入端口可配置为上拉或下拉,默认上拉。
- (2) 5~24VDC 输入电平。
- (3) ENABLE 信号为外部使能控制,在任何模式下都有效。仅为输入引脚,有效电平状态可配置。
- (4) DIR 是方向信号,控制电机正反转。仅为输入引脚,有效电平状态可配置。
- (5) CLK / PWM 是步进脉冲、PWM 信号共用端口,通过 RS232 或 CAN 设置信号属性。用户根据需要,可以选择下列其中一种控制组合:

PWM 脉宽信号,可以实现速度、转矩模式控制;

CLK、DIR 脉冲信号,可以实现速度和位置模式控制;



CLK 脉冲频率范围: 0~300KHz。脉冲宽度 T2≥1.5uS, 30%≤占空比≤70%。换向建立时间 T1≥ 1.5mS。

- (6) LEFT 和 RIGHT 是限位信号。仅为输入引脚,触发电平可配置。
- (7) IO1~IO2 可编程配置为以上所需的输入功能。

6.2 可编程输出端口

IO3~IO4, FAULT 可编程输出接口电路如下

(1) FAULT 是驱动器输出的出错信号,有效电平可配置。

(2) IO3 输出有效电平可配置,功能可配置为电流方向; IO4 不能配置输出有效电平,但可编程配置为所需的输出功能,如电流方向、电流—PWM。

7.其它操作

7.1 寻零

寻零有两种方式: 开机自动寻零、指令寻零。

- (1) 相关指令
 - 指令寻零指令: CMPO
 - 设置寻找零位最大范围: SOP+参数;
 - 设置编码器零位与机戒零位的偏差: SORG+参数
 - 设置寻找零位的速度: SOV+参数
- (2) 零位信号输入:零位信号从编码器 Z 通道输入
- (3) 寻零动作: 首先向正向寻零,如果到正向最大寻零位置未能检测到零位信号,电机将从正向最大 寻零位置向反向最大寻零位置运转继续寻零。
- (4) 检测零位信号后,可以人为设定机械偏差,修正零位。
- (5) 零位信号检测成功后, 电机将运行至修正后的零位处。
- (6) "寻零范围"是相对值。开机寻零时,"寻零范围"是相对于开机位置的范围;指令寻零时,"寻零范围"是指相对于当前位置的范围。当检测到零位,经过机械偏差修正,将重新定位零位。
- (7) 有效信号:正向寻零时,驱动器识别 Z 信号的下降沿有效;负向寻零时,识别 Z 信号的上升沿有效。
- (8) 在寻零过程中,如果遇到限位信号有效,则停止在该方向的寻零,自动转向另一方向寻零。
- (9) 在寻零过程中,任何预置的指令信号(数字指令、步进脉冲、PWM、模拟信号)均无效,但外部 使能 ENABLE 信号有效。
- (10) 如果寻零失败,驱动器将把开机位置作为基准零点。
- (11) 无论是否成功, 寻零过程结束后, 驱动器都将自动转入正常工作状态。

7.2 硬件限位、软件限位

硬件限位,即通过外部端口 RIGHT、LEFT 及功能可编程端口 IO1~IO2 输入。

软件限位,即指令设定软件限位的位置值。

这两种限位可以分别通过指令选择是否启用。当两种限位方式均被启用时,以先到的限位优先起作用。

(1) 相关指令:

- 设置硬件限位: SPHE+参数(参数=0: 取消硬件限位; 参数=1: 启用硬件限位)
- 设置右限位 RIGHT 端口配置信息: SPOS+参数

右限位端口参数配置信息如下:

Byte	Bit	名称	描述	
0	0	输入输出方向	0-输入	
	1	上拉下拉	0-下拉 1-上拉	
	2	有效电平	0-低有效 1-高有效	
1	7~0	功能类型	3: 右向限位	

• 设置左限位 LEFT 端口配置信息: SNEG+参数

左限位端口参数配置信息如下:

Byte	Bit	名称	描述	
0	0	输入输出方向	0-输入	
	1 上拉下拉 0-下拉		0-下拉 1-上拉	
	2	有效电平	0-低有效 1-高有效	
1	7 ∼0	功能类型	4: 左向限位	

• 设置 IO1~IO2 端口配置信息: SIOA/SIOB +参数

IO1~IO2参数配置信息如下:

Byte	Bit	名称	描述	
0	0	输入输出方向	0-输入 1-输出	
	1	上拉下拉	0-下拉 1-上拉	
	2	有效电平	0-低有效 1-高有效	
1	7~0	功能类型	0: 无效功能1: 使能	
			3: 正向限位	
			4: 反向限位	
			5: 急停	

- 设置软件限位: SPE+参数(参数=0: 取消软件限位; 参数=1: 启用软件限位)
- 设置软件限位的位置上限: SPH +参数
- 设置软件限位的位置下限: SPL+参数
- (2) 位置模式限位:

硬件限位有效信号可配置,驱动器检测到限位信号后,记录限位信号对应的位置,将 电机锁定在限位位置上,此时,只能接收相反方向的移动指令。硬件限位有效时,电机可 能会过冲一定距离,驱动器会将电机调整到限位位置,并保持电机加力。

启用软件限位时,系统接收的目标位置指令不能超过限位位置,如果超过限位位置, 将自动将目标位置调整为限位位置,电机运动到限位位置自动停止。

(3) 其它模式时:

启用硬件限位时,硬件限位有效信号可配置。驱动器检测到限位信号后,电机立刻停止, 直至接到相反方向的运转指令。

启用软件限位时,驱动器如果能检测到编码器反馈,电机到达限位位置后,立刻停止, 直至接到相反方向的运转指令。驱动器如果不能检测到编码器反馈,等同于软件限位无效。

五. 故障保护与复位

1. 安全级别

保护机制分为两个安全级别:报警和状态锁存。各级别故障信息保护机制如下:

- 报 警:驱动器继续工作,标志置位, FAULT信号输出;
- 状态锁存:故障发生后,系统关断 PWM,标志置位, FAULT 信号输出;故障标志只能通过发送 DIS 指令或外部 ENABLE 信号去使能清除。

2. 故障保护依据

2.1 温度报警

MCDS4805: 当驱动器温度超过 65℃时产生温度报警;恢复后自动清除报警标志。

MCDS4805E: 当驱动器温度超过 80℃时产生温度报警;恢复后自动清除报警标志。

2.2 温度保护

MCDS4805:驱动器温度超过 70℃或低于-10℃将产生保护。

MCDS4805E: 驱动器温度超过 85℃或低于一42℃将产生保护。

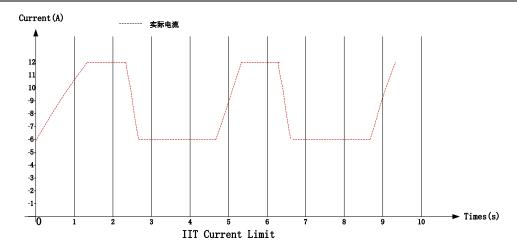
2.3 过流保护

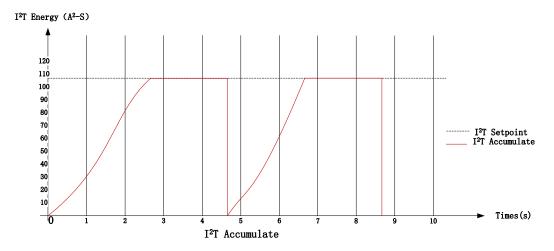
IIT 限流保护。IIT 限流模式说明如下:

1) IIT 限流模式使用参数如下:

SIIT——IIT 限流时间;若实际电流大于峰值电流,则在 IIT 时间内将实际电流限制在峰值电流以内

SCIT——IIT 恢复时间;经过 IIT 限流时间后,将实际电流限制在连续电流,


SPT——保护延迟时间


SPC——最大峰值电流;

SCC——最大连续电流

2) 举例具体说明 IIT 限流:

若峰值电流 SPC=12A,连续电流 SCC=6A,SIIT 限流时间为 1S,SCIT 恢复时间为 2S; 则 I2T 设置点=(12A2-6A2)*1s=108 A2S。

如上图,在 0 时刻,实际电流已经达到最大连续电流 6A, I2T 累加变量开始累加,若实际电流已达到最大峰值电流 SPC 12A, I2T 累加变量未达到设置点(108 A2S),实际电流将被限制到最大峰值电流 SPC12A;当 I2T 累加变量达到 I2T 设置点(108 A2S)时,实际电流被限制到最大连续电流 SCC 6A。在 4.8s 时,IIT 恢复时间到,I2T 累加变量清零并开始新的能量累加,若实际电流已达到最大峰值电流 SPC12A,I2T 累加变量未达到设置点(108 A2S),实际电流将被限制到最大峰值电流 SPC 12A;当 I2T 累加变量达到 I2T 设置点(108 A2S)时,实际电流被限制到最大峰值电流 SPC 12A;当 I2T 累加变量达到 I2T 设置点(108 A2S)时,实际电流被限制到最大连续电流 6A。

3) 限流保护:

当实际电流大于最大连续电流的累积时间超过保护延迟时间 SPT 时,则产生限流保护。

2.4 过压、欠压保护

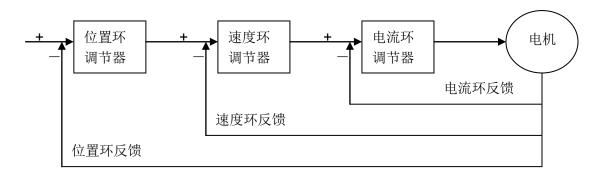
当电源电压低于 10.5V 时系统将产生欠压保护; 当电源电压高于 54V 系统将产生过压保护。

2.5 速失控保护

驱动器无法控制电机按照设定的指令运行,将产生保护。

2.6 跟踪误差保护

在输入 CLK 脉冲的位置控制模式下,电机实际运行的位置与 CLK 指令之间的误差超过限定值 将产生动态跟踪误差保护。


3. 故障信息列表

保护类别	安全级别	关断 PWM 输出	FAULT 输出
温度报警	报警	否	是
温度保护	状态锁存	是	是
过流保护	状态锁存	是	是
欠压保护	状态锁存	是	是
过压保护	状态锁存	是	是
速度失控保护	状态锁存	是	是
跟踪误差保护	状态锁存	是	是
EEPROM 出错保护	状态锁存	是	是

注:故障状态被锁定后,驱动器将停止功率输出;使用 DIS 指令或者外部去使能信号,可以清除所有故障标志。

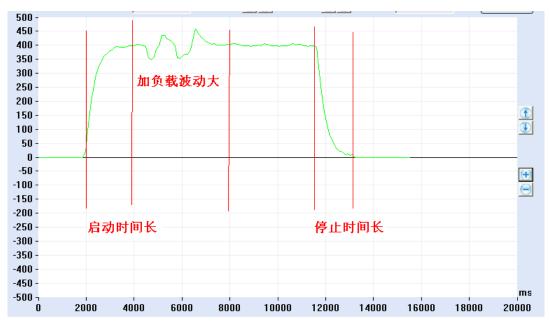
六. PID 调试

为使系统获得理想的控制效果,用户需要根据自己的实际应用情况调试 PID 参数,从而改善系统的 动态特性。通过本公司提供的《伺服运控管理系统--铭朗科技--V3.31》,能直观的观测到调试效果,提高调试效率。

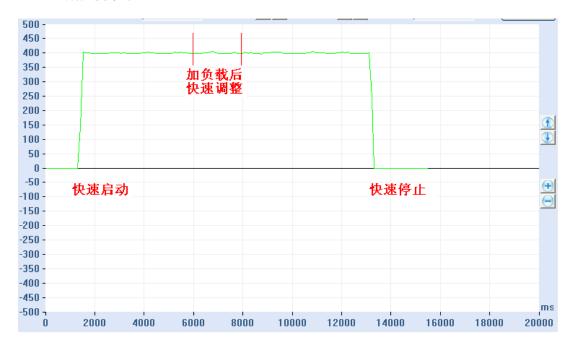
如果是多环调试,应当先调试内环,再调试外环。参数调节示例如下:

1. 速度环 PID 调试

- 1)、设置相关参数、工作模式及信号源 如: SMOD0 (速度模式、数字指令信号源)
- 2)、监测速度并运行


通过《伺服运控管理系统—铭朗科技—V3.31》监测实时速度

启动电机: V400


3)、调整 PID

根据监测图形和电机状态来判断 PID 参数是否过大或过小:


A、参数过小,此时可以同时增加 PI, D 保持 0 不变(如下图)。

B、刚性较好的 PID:

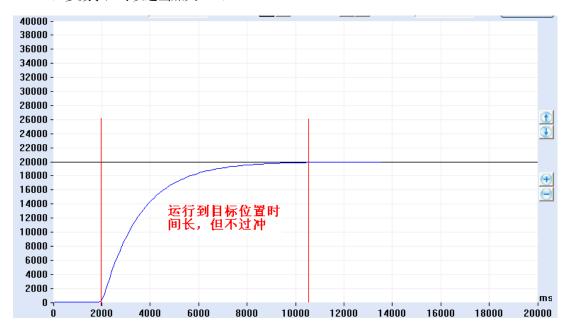
C、PID 过大, 此时应同时减小 PI:

当 PID 过大时, 电机会振动。

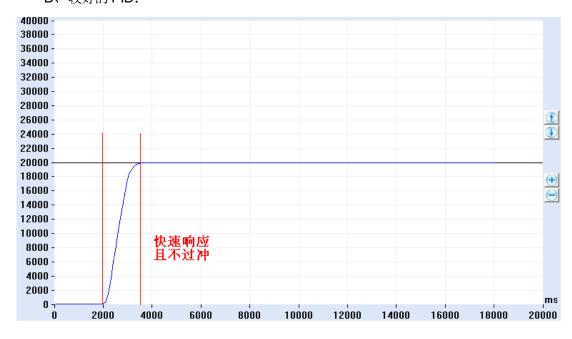
2. 位置 PID 调试

1)、设置相关参数、设置模式及信号源 如: SMOD256 (位置模式、数字指令信号源)

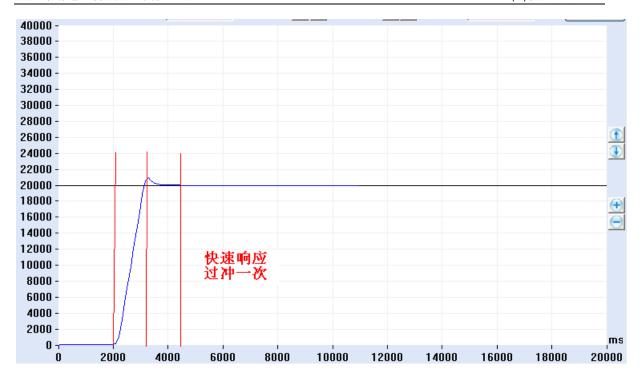
公司地址: 西安市高新区唐延路南段旺座现代城 H 座 1103 室 (P.R.: 710075)

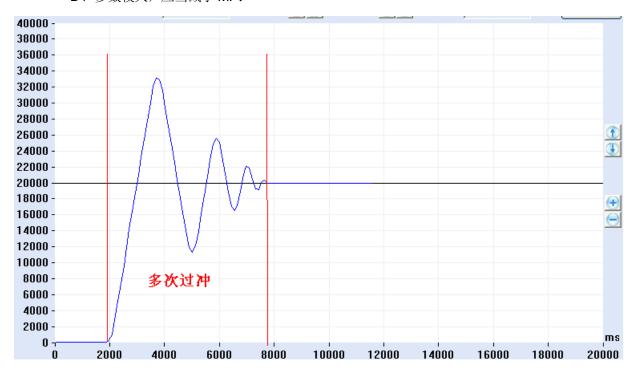

2)、监测位置并运行

通过《伺服运控管理系统--铭朗科技--V3.31》监测实时位置运行电机,M20000


3)、调整 PID

根据监测图形和电机状态来判断 PID 参数是否过大或过小:


A、参数小,可以适当加大 MP:


B、较好的 PID:

C、单次过冲 PID

D、参数较大,应当减小MP:

- E、注意: 如果加速度过小也会造成多次过冲的现象。
- F、在B或C的基础上微调MP和MD,直到调试出比较合适的位置环PID,并保存到EEPROM中。

3. 力矩环 PID 调试

- 1)、设置相关参数、设置模式及信号源 如: SMOD512 (力矩模式、数字指令信号源);
- 2)、监测位置并运行

通过《伺服运控管理系统--铭朗科技--V3. 31》监测实时位置运行电机,EC1000

3)、调整 PID

根据监测图形和电机状态来判断 PID 参数过大或过小,尽而调整 PID 参数。

(图形原理同上)

七. 参数设置与常见问题

1. 参数设置

- (1) 连接 RS232 或 CAN 通讯口,在《伺服运控管理系统--铭朗科技--V3.31》上进行设置,详见软件使用说明:
- (2) 用户自己根据软件协议进行设置。

2. 参数保存

- (1) 使用《伺服运控管理系统--铭朗科技--V3.31》进行保存,详见软件使用手册;
- (2) 用户使用 ESA 指令进行保存。

注意: 在调试过程中下载的参数,如果不通过 ESA 指令保存,掉电后将丢失!

3. ENA/DIS 指令和外部使能信号 ENABLE 的关系

外部使能信号 ENABLE 的优先级最高,当它为有效,ENA/DIS 指令操作无效,当它无效时, ENA/DIS 指令操作有效;

4. 关于 SBS 急停指令

电机在运转中需要急停时,可用 SBS 指令。但此指令在重负载和高速度时会对电机和驱动器产生一定伤害,严禁经常使用,解除急停状态,可使用 CBS 指令或将驱动器重新加电。

5. 关于读取速度指令 GV

此驱动器速度显示分辨率为 1RPM。电机在运转中的速度小于 1RPM 时,通过 GV 指令读取的速度均为 1RPM,只有电机停止运转或处于制动状态,读取的速度才会为 0。

6. 关于 ESA 指令

在使用 ESA 指令存储参数时,应将电机停止运转,否则会出现短暂失调现象;